Hamiltonian Cycles on a Random Three-coordinate Lattice
نویسنده
چکیده
Consider a random three-coordinate lattice of spherical topology having 2v vertices and being densely covered by a single closed, self-avoiding walk, i.e. being equipped with a Hamiltonian cycle. We determine the number of such objects as a function of v. Furthermore we express the partition function of the corresponding statistical model as an elliptic integral. PACS codes: 05.20.y, 04.60.Nc, 02.10.Eb
منابع مشابه
Counting Hamiltonian cycles on planar random lattices
Hamiltonian cycles on planar random lattices are considered. The generating function for the number of Hamiltonian cycles is obtained and its singularity is studied. Hamiltonian cycles have often been used to model collapsed polymer globules[1]. A Hamiltonian cycle of a graph is a closed path which visits each of the vertices once and only once. The number of Hamiltonian cycles on a lattice cor...
متن کاملSome combinatorial aspects of finite Hamiltonian groups
In this paper we provide explicit formulas for the number of elements/subgroups/cyclic subgroups of a given order and for the total number of subgroups/cyclic subgroups in a finite Hamiltonian group. The coverings with three proper subgroups and the principal series of such a group are also counted. Finally, we give a complete description of the lattice of characteristic subgroups of a finite H...
متن کاملInvestigation of pore-scale random porous media using lattice boltzmann method
The permeability and tortuosity of pore-scale two and three-dimensional random porous media were calculated using the Lattice Boltzmann method (LBM). Effects of geometrical parameters of medium on permeability and tortuosity were investigated as well. Two major models of random porous media were reconstructed by computerized tomography method: Randomly distributed rectangular obstacles in a uni...
متن کاملRigorous Bound on the Integrated Density of States of a Three-Dimensional Random Alloy
We study the lattice model of a random alloy whose Hamiltonian is H=−Σr,δt a†rar+δ + Σrεra†rar, where δ are nearest-neighbor vectors and εr is a random site-diagonal energy uniformly distributed over the interval 0≤εr≤W. We prove that the integrated density of states per site N−1Z(E) satisfies the inequality, N−1Z(E)≤C1e−C2/E, where C1 and C2 are constants.
متن کاملLoop-erased Random Walks, Spanning Trees and Hamiltonian Cycles
We establish a formula for the distribution of loop-erased random walks at certain random times. Several classical results on spanning trees, including Wilson’s algorithm, follow easily, as well as a method to construct random Hamiltonian cycles.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008